UAV high-throughput phenotyping Summary

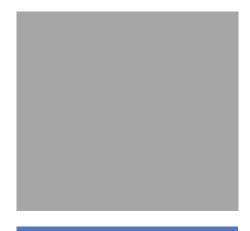
Amir Ibrahim, Mahendra Bhandari, Jinha Jung, Jose Landivar, Ismaila Abiola Olaniyi

List of spectral vegetation indices developed

Feature Name	Formula	Abbreviation
Canopy Cover	-	CC
95 th percentile Canopy Height	CHM = DSM - DTM	СН
Canopy Volume	-	CV
Average Excess Green Index	ExG = 2G - R - B	ExG
Average Normalized Difference Vegetation Index (NDVI)	$\frac{NIR - R}{NIR + R}$	NDVI
Average Normalized Difference Red Edge Index (NDRE)	$\frac{NIR - RE}{NIR + RE}$	NDRE

NOTE: CHM: Canopy Height Model, DTM: Digital Terrain Model, DSM: Digital Surface Model. Reflectance obtained in the red band is denoted by R, green band by G, red edge by RE, and near infrared by NIR.

UAV Data Collection and Processing Update


Location	Flights	UAS-Hub Project created	Processing & Data Delivery	Notes
TX-College Station/McGregor	25	2022 College Station Winter Wheat/ 2022 McGregor Wheat	CC, CH, CV, ExG, NDVI, NDRE [¶]	McGregor NDVI and NDRE not processed yet
TX-Amarillo Irrigated	23	2022 Amarillo Irrigated	CC, CH, CV, ExG, NDVI, NDRE	-
Kansas-Colby	12	2022 Colby Wheat	CC, CH, CV, ExG, NDVI, NDRE	-
Kansas-Hays	7	2022 Hays Wheat	CC, CH, CV, ExG, NDVI, NDRE	Need to re-upload the 06/16 flight
UC Davis	9	2022 DA Wheat Irrigation	CC, CH, CV, ExG, NVDI, NDRE	-

UAV Data Collection and Processing Update

Location	Flights	UAS-Hub Project created	Processing & Data Delivery	Notes
Idaho	11	2022 Idaho Wheat	Waiting for boundary correction	-
Cornell	2	2022 Cornell Wheat	Expected Delivery: 10/31/2022	Needed Plot Layout (received 9/28/2022)
WSU (Washington)	4	2022 Washington Wheat	Expected Delivery: 10/31/2022	Need Plot Layout (contacted on 8/27/2022)
UIUC	8	2022 UIUC Wheat – St. Peter	Expected Delivery: 10/31/2022	Need Plot Layout (received 9/28/2022)
UNL Lincoln/Sidney	4/6	2022 UNL Wheat – Lincoln	Expected Delivery: 10/31/2022	Lincoln: Need GCPs & re-upload 0602_sfyld flight Sidney: Need GCPs & re-upload 0527_multi, 0616_multi, 0616_rgb, 0718_multi flights
USU (Utah)	6	2022 Utah Wheat	Expected Delivery 10/31/2022	Need to re-upload 06/21 and 07/05 flights

Programs that will process their own UAS data

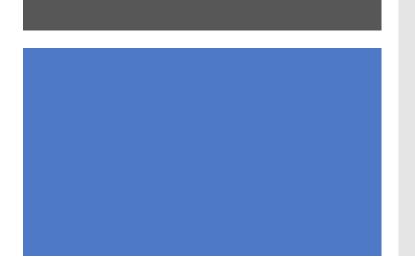
- Example programs
 - Colorado State University
 - Oklahoma State University
 - Virginia Tech
- Tasks
 - Report the number of flights
 - Status of data analysis
 - Submit to T3

Bottlenecks: Efficient Data Processing & Delivery

- Programs use different sensors (from the proposed sensors and platforms See User's Manual)
- Programs not following data collection and transferring protocol
 - Data upload protocol not followed: uploading photos individually, instead of uploading the whole flight as a single zip file.
 - o Field layout not clearly documented
 - Incomplete submission (have to wait for GCP survey results to start processing)
 - o Problems with GCPs
 - Some programs used white square plates as GCPs without a black & white cross pattern
 - o GCPs were removed or covered by plants

Bottlenecks: Efficient Data Processing & Delivery

 Boundary creation and matching with field layout is very time-consuming (read the manual)
 Takes 2-3 days to do boundary delineation for a single field


 If no dataset collected before plant emergence (read the manual)

 Certain phenotypic features (canopy height and canopy volume) can't be reliably computed

Long process

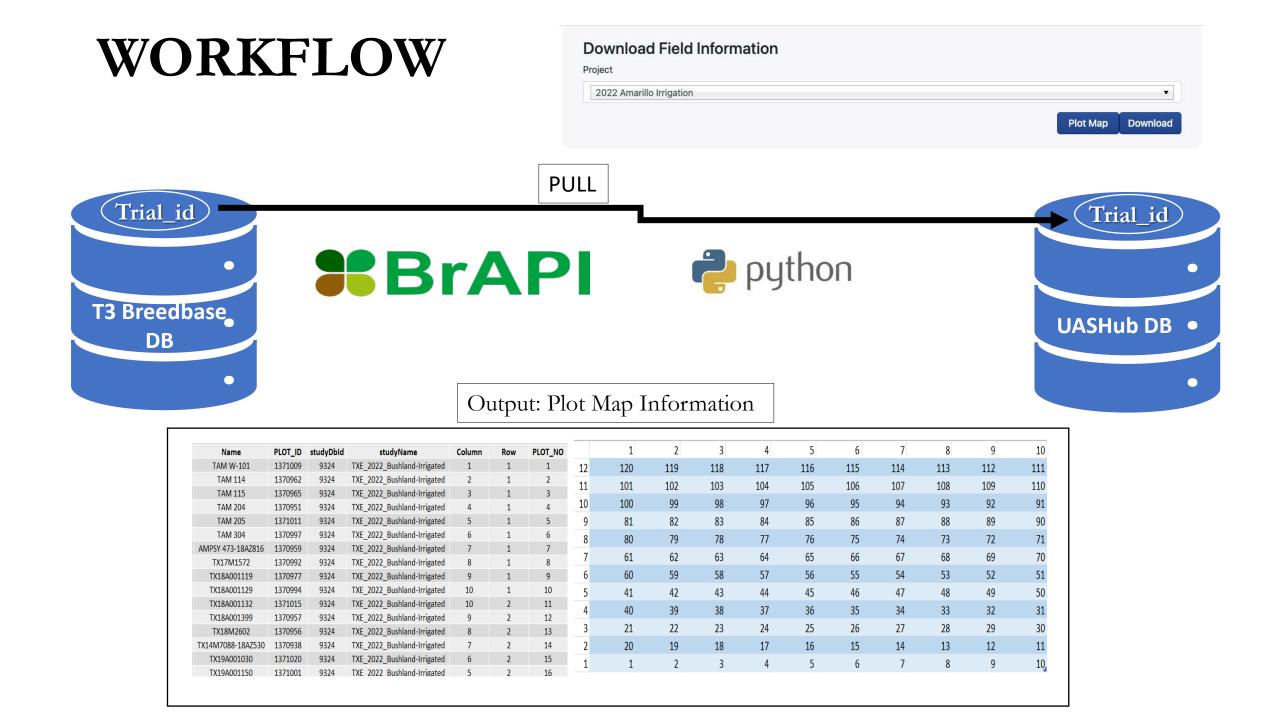
 interpolation procedure to create the Digital Terrain Model

 Requires a significant manual process and takes a lot of time and effort Bottlenecks: Efficient Data Processing & Delivery

Please read and follow the User's Manual

- Each of the 19 programs is allowed 1 location, two acres, two sensors (RGB and Multi-spectral), 10 flights
- The location must be a spatially continuous field. When you have two fields that are smaller than 1 acre each and they are not spatially connected, it will be considered as two locations even though the total area is less than 2 acres.
- Fly only the WheatCAP germplasm
- o Train students to do the plot boundaries (see Manual)
- o Submit your data as soon as possible after each flight
- Please send your field layout and plot details in Excel templates ASAP (See Manual)
- Smooth transfer of field layout and plot detail from programs to T3 and UAS-Hub is of paramount importance and requires cooperation
- o The UAS-Hub and A&M team is not a service component

PYTHON CODE DEVELOPMENT


	# In[1]:
	import requests
	import pandas as pd
	import numpy as np
	# #### Input the Trial_ID
	* In[2]:
	#Specifying the ID of the trial to collect from T3 trial_id = 9324
	#Connecting to the I3 Breedbase using the endpoints auth key = "xuthicerydxyagehonizwesebiatyzyzhhocathhrfingdzsbezravu/jowdebiyagymrine" #not reall
1	autn_key =xqtnjoeyaxyqephonitzvesebietyzvznecoattnzfingazsbezrqvufjowaebivqgyeriebenot_real
	api_base_url = " <u>https://wheatcap.triticeaetoolbox.org</u> "
1	endpoint_path = f"/brapi/v2/observationunits?studyObId={trial_id}&pageSize=1000" #Page size was
	endpoint = f"{api_base_url}{endpoint_path}"
	head = {'Authorization': 'token {}'.format(auth_key)}
	r = requests.get(endpoint, headers=head)

BrAPI

BrAPI – Breeding
 Application Programming
 Interface

- Interchanging plant phenotypic and genotypic information between crop breeding applications
- The Python code gets input as the Trial_id and gives a response in the form of plot map information in csv format.

WORK IN PROGRESS

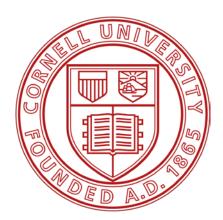
PULL – done (Plot Map Information)

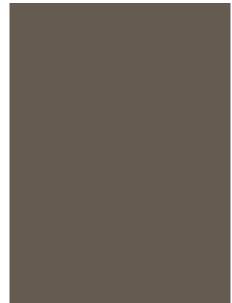
PUSH from UAShub DB to T3 Breedbase DB

Pushing phenotypic information. Studying the data structure of T3 DB. Linking the data from T3 with a unique identifier

Acknowledgments

Texas A&M Team
Juan Landivar
Jackie Rudd
Shannon Baker
Russ Garretson
Shuyu Liu





UAS Hub Technical Support

- For technical support with the Wheat CAP UAS Hub, contact Jose L. Scott at: jose.landivarscott@ag.tamu. edu
- Office: (361) 265-9201
 - Access
 - Project creation
 - Data submission
 - Data download
 - Etc.

